
CLEAN ARCHITECTURE
Authors Robert C. Martin, James Grenning, Simon Brown

ARCHITECTURE
From Grady Booch, architecture represents the significant design
decisions that shape a system, where significant is measured by
cost of change.

SINGLE RESPONSIBILITY PRINCIPLE
A module should be responsible to one, and only one actor, so
that actors are not coupled.

Employee

calulatePay
reportHours
save

CFO

COO

CTO

(a) Bad design

PayCalculator

calulatePay

HourReporter

reportHours

EmployeeSaver

save

EmployeeData

(b) Good design

EmployeeFacade

calulatePay
reportHours
save

PayCalculator

calulatePay

HourReporter

reportHours

EmployeeSaver

save

EmployeeData

(c) Using a facade

OPEN CLOSE PRINCIPLE
A software artifact should be open for extension but close for
modification: arrange the components into a dependency
hierarchy that protects higher-level components from changes
in lower-level components.

Protected (HL) Variant (LL)
depends on

knows nothing about

This can be implemented by following
the Dependency Inversion Principle

LISKOV SUBSTITUTION PRINCIPLE
All the subtypes S of a type T should be fully substituable by T :
interfaces of T and S should be exactly the same.

Rectangle

setWidth
setHeight

Square

setSide

User

This illustrates the square/rectangle
problem, which violates the principle,
as Square and Rectangle interfaces
and behaviours are not compatible.
It forces to add extra mechanisms to
distinguish each types during runtime,
which lowers the software
maintainability.

INTERFACE SEGRAGATION PRINCIPLE
The client should not depend on something that it does not use.
Consider a class whose responsibility is persisting data on the
harddrive. Splitting the class into a read- and a write part would
not make practical sense. But some clients should only use the
class to read data, some clients only to write data, and some to do
both. Applying ISP here with three different interfaces would be a
nice solution.

DEPENDENCY INVERSION PRINCIPLE
The most flexible systems are those which source dependencies
refer only to abstractions, not to concretions. It is possible to
invert dependencies using Object-Oriented techniques:

Component A

Component B

A1 A2

B1 B2

(a) Both sides dependencies

Component A

Component B

A1 A2

IA

B1 B2

(b) All dependencies from B to A

I Do not refer to concrete classes,
I Do not derive a concrete class,
I Do not redefine concrete methods.

PRINCIPLES OF COMPONENTS COHESION
I Reuse/Release Equivalence: the granule of reuse is the granule

of release;
I Common Closure: a component should not have mutliple rea-

sons to change (SRP);
I CommonReuse: classes in a component are inseparable (ISP).

STABLE & ABSTRACT DEPENDENCY PRINCIPLES
These 2 rules can be applied at the component-level and state
that a component should depend in the direction of stability
and be as abstract as it is stable.

I Let I(C) be a measure of the instability of a component C:
I(C) = depout (C)

depout (C)+depin (C) . The Stable Dependency Principle
(OCP applied to component) states that if B depends on A, we
should have C(A) < C(B).

I Let A(C) be a measure of the abstractness of a component
C: A(C) = Ninterfaces (C)

Nclass (C) . The Abstract Dependency Principle
states that component should be on the curve reprensented by
: A(C) = 1 − I(C).

DEPENDENCY RULE
The following rules can be applied in the whole project:

DB
Web UI Devices

Co
ntr
olle

rs Pr
esenter GatewaysUse
cases

EntitiesHigher level

I inner layers know nothing about
outer layers;

I source code dependencies point
inwards to higher-level policies;

I isolated data structures are
passed across boundaries.

SERVICES ARCHITECTURE
Component 1 Component 2

Service 1.1

Feature 1

Service 2.1 Service 1.2

Feature 2

Service 2.2

EP1 EP2

Services in themselves are not
architecturally significant elements.
Architectural boundaries do not fall
between services, but they run
through the services, dividing them in
components.

DESIGN & CODE ORGANIZATION

Controller

IService

Service

IModel

Model

(a) Layer

Controller

IService

Service

IModel

Model

(b) Feature

Controller

IService

Service

IModel

Model

(c) Domain

Controller

IService

Service

IModel

Model

(d) Component

(a) is easy and quick to get started, (b) is easy but removes all
boundaries, (c) maintains boundaries but bypass is still possible
via visibility incorrectness and (d) has a good separation and
architecture principles can be statically verified.


