
A PHILOSOPHY OF SOFTWARE
DESIGN
Authors John Ousterhout

DESIGN COMPLEXITY
Complexity is anything related to the
structure of a software that makes it hard
to understand or modify. It can be defined
as:

C =
∑
p

cp · tp

Where p is the number of components, cp
the complexity of each component, et tp
the fraction time accorded to it.

NATURE OF COMPLEXITY
Depedencies and obscurity causes
complexity. It can be evaluated by
questionning the 3 points:

I Change amplification: amount of
code affected by each design decision;

I Cognitive load: how much a devel-
oper need to know to complete a task;

I Unknown unknows: obviousness of
which piece of code must be modified
to complete a task.

STRATEGIC VS. TACTICAL

Pr
og

re
ss

Time

Tactica
lStr

ate
gic

Tactical programming
make things work,
quickly. Strategic
programming invest
time on design.

At the beginning, a tactical approach to
programming will make progress more
quickly than a strategic approach.
However, complexity accumulates more
rapidly under the tactical approach, wich
reduces productivity.

DEEP VS. SHALLOW

<Interface>

Functionnalities

(a) Shallow module

<Interface>

Functionnalities

(b) Deep module

Deep modules have a simple interface
and powerful functionnalities, shallow
modules have complex interface, not
much functionnality and hide does not
hide complexity.

TOGETHER OR APART ?
Modules, classes or functions should be
together if:

I information is shared,
I it simplifies interface,
I it avoids ressources duplication.

Keep a separation between specialized
and general entities.

COMMENTS
Comments should capture information
that was in the mind of the designer and
could not be represented in the code.

NAMING
“The greater the distance between a
name’s declaration and its uses, the
longer the name should be.”

Andrew Gerrand


